Wheels Defined

Mechanics and function

The low resistance to motion (compared to dragging) is explained as follows (refer to friction):
  • the normal force at the sliding interface is the same.
  • the sliding distance is reduced for a given distance of travel.
  • the coefficient of friction at the interface is usually lower.

Bearings are used to help reduce friction at the interface. In the simplest and oldest case the bearing is just a round hole through which the axle passes (a “plain bearing”).

Example:

  • If a 100 kg object is dragged for 10 m along a surface with the coefficient of friction μ = 0.5, the normal force is 981 N and the work done (required energy) is (work=force x distance) 981 × 0.5 × 10 = 4905 joules.
  • Now give the object 4 wheels. The normal force between the 4 wheels and axles is the same (in total) 981 N. Assume, for wood, μ = 0.25, and say the wheel diameter is 1000 mm and axle diameter is 50 mm. So while the object still moves 10 m the sliding frictional surfaces only slide over each other a distance of 0.5 m. The work done is 981 × 0.25 × 0.5 = 123 joules; the work done has reduced to 1/40 of that of dragging.

Additional energy is lost from the wheel-to-road interface. This is termed rolling resistance which is predominantly a deformation loss. This energy is also lowered by the use of a wheel (in comparison to dragging) because the net force on the contact point between the road and the wheel is almost perpendicular to the ground, and hence, generates an almost zero net work. This depends on the nature of the ground, of the material of the wheel, its inflation in the case of a tire, the net torque exerted by the eventual engine, and many other factors.

A wheel can also offer advantages in traversing irregular surfaces if the wheel radius is sufficiently large compared to the irregularities.

The wheel alone is not a machine, but when attached to an axle in conjunction with bearing, it forms the wheel and axle, one of the simple machines. A driven wheel is an example of a wheel and axle. Note that wheels pre-date driven wheels by about 6000 years, themselves an evolution of using round logs as rollers to move a heavy load—a practice going back in pre-history so far, it has not been dated.

Construction

Rim

In the 1st millennium BCE an iron rim was introduced around the wooden wheels of chariots.The rim is the “outer edge of a wheel, holding the tire.” It makes up the outer circular design of the wheel on which the inside edge of the tire is mounted on vehicles such as automobiles. For example, on a bicycle wheel the rim is a large hoop attached to the outer ends of the spokes of the wheel that holds the tire and tube.

Hub

The hub is the center of the wheel, and typically houses a bearing, and is where the spokes meet.

A hubless wheel (also known as a rim-rider or centerless wheel) is a type of wheel with no center hub. More specifically, the hub is actually almost as big as the wheel itself. The axle is hollow, following the wheel at very close tolerances.

Spokes

A spoked wheel on display at The National Museum of Iran, in Tehran. The wheel is dated to the late 2nd millennium BCE and was excavated at Choqa Zanbil.

spoke is one of some number of rods radiating from the center of a wheel (the hub where the axle connects), connecting the hub with the round traction surface. The term originally referred to portions of a log which had been split lengthwise into four or six sections. The radial members of a wagon wheel were made by carving a spoke (from a log) into their finished shape. A spokeshave is a tool originally developed for this purpose. Eventually, the term spoke was more commonly applied to the finished product of the wheelwright’s work, than to the materials used.

Wire

The rims of wire wheels (or “wire spoked wheels”) are connected to their hubs by wire spokes. Although these wires are generally stiffer than a typical wire rope, they function mechanically the same as tensioned flexible wires, keeping the rim true while supporting applied loads.

Wire wheels are used on most bicycles and still used on many motorcycles. They were invented by aeronautical engineer George Cayley and first used in bicycles by James Starley. A process of assembling wire wheels is described as wheelbuilding.

A 1957 MGA automobile with wire wheels

Tire/Tyre

Stacked and standing car tires

tire (in American English and Canadian English) or tyre (in some Commonwealth Nations such as UK, India, South Africa and Australia) is a ring-shaped covering that fits around a wheel rim to protect it and enable better vehicle performance by providing a flexible cushion that absorbs shock while keeping the wheel in close contact with the ground. The word itself may be derived from the word “tie,” which refers to the outer steel ring part of a wooden cart wheel that ties the wood segments together (see Etymology below).

The fundamental materials of modern tires are synthetic rubber, natural rubber, fabric and wire, along with other compound chemicals. They consist of a tread and a body. The tread provides traction while the body ensures support. Before rubber was invented, the first versions of tires were simply bands of metal that fitted around wooden wheels to prevent wear and tear. Today, the vast majority of tires are pneumatic inflatable structures, comprising a doughnut-shaped body of cords and wires encased in rubber and generally filled with compressed air to form an inflatable cushion. Pneumatic tires are used on many types of vehicles, such as cars, bicycles, motorcycles, trucks, earthmovers, and aircraft.

Trywheel

A trywheel is an arrangement of three wheels mounted on a y-shaped frame for the purpose of passing over stairs or rough ground. These may be driven by external force or integral motors.

Over-Mold-Hub-Assembly-200x200
Bike lane
Foam-Fill-3Spk-D-Knobby300x300
Terms and Conditions of Purchase
Terms and Conditions of Sale
  Privacy Policy
CA Privacy Notice
 Copyright © 2024 CEW. All Rights Reserved. linkdin